study the effect of silicon nanowire length on characteristics of silicon nanowire based solar cells by using impedance spectroscopy

Authors

m. zahedifar

m. farangi

m. h. pakzamir

abstract

silicon nanowire (sinw) arrays were produced by electroless method on polycrystalline si substrate, in hf/ agno3 solution. although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. in order to study the influence of etching time (which affects the sinws length) on different elements in ac equivalent circuit of the fabricated solar cells, impedance spectroscopy was accomplished for the first time in forward bias direction and under illumination. measurements indicated a growth of recombination with increase in etching time that may be attributed to enhancement in the number of defects on nanowires surfaces as a result of increase in the length of sinws. this trend reduces recombination resistance in device equivalent ac circuit and reduces the efficiency of solar cells. impedance spectra and fitting curves also showed that the effective carrier lifetime decreases with increase in etching time.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

full text

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

full text

Silicon nanowire solar cells

Silicon nanowire-based solar cells on metal foil are described. The key benefits of such devices are discussed, followed by optical reflectance, current-voltage, and external quantum efficiency data for a cell design employing a thin amorphous silicon layer deposited on the nanowire array to form the p-n junction. A promising current density of 1.6 mA /cm2 for 1.8 cm2 cells was obtained, and a ...

full text

Core-shell silicon nanowire solar cells

Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded...

full text

Light trapping in silicon nanowire solar cells.

Thin-film structures can reduce the cost of solar power by using inexpensive substrates and a lower quantity and quality of semiconductor material. However, the resulting short optical path length and minority carrier diffusion length necessitates either a high absorption coefficient or excellent light trapping. Semiconducting nanowire arrays have already been shown to have low reflective losse...

full text

Amorphous Silicon Core-shell Nanowire Solar Cells

Nanostructures such as nanoparticles and nanowires have been demonstrated as powerful tools to improve light absorption[1-4], to enable low temperature process[5], to demonstrate multi-exciton generation[6], and to decouple the absorption depth and carrier diffusion length[7, 8]. Here we demonstrated the first amorphous silicon coreshell nanowire solar cells, which can be fabricated through a l...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of nanoscience and nanotechnology

Publisher: iranian nano society

ISSN 1735-7004

volume 9

issue 2 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023